If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+15x-18=0
a = 9; b = 15; c = -18;
Δ = b2-4ac
Δ = 152-4·9·(-18)
Δ = 873
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{873}=\sqrt{9*97}=\sqrt{9}*\sqrt{97}=3\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{97}}{2*9}=\frac{-15-3\sqrt{97}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{97}}{2*9}=\frac{-15+3\sqrt{97}}{18} $
| 9x2-36=0 | | x-3=25.75 | | x+3=25.75 | | −12g−6=−13g-2 | | 3x=25.75 | | -u+17=176 | | 275=81-y | | 4x=10-x/3 | | F(0)=4x^2-5x | | X+(x+8)+2x=84 | | 5x2+12=3x2-20 | | 5x2=3x | | 10x=5(12-x) | | 2(2x+3)-7x=23-5(x+4) | | G(-2)=-2x3-3 | | 2(x-1)-7x=18-05(x+4) | | 6m=2(m+7)=m-14 | | 9(x+3)+3=4x-5 | | X^2=39-x^2 | | 12-3x=4+2x | | 4^(3x-3)=64 | | 4^3x-3=64 | | 2x-5=-24/7 | | 8x+28-3x=54-4.5+4× | | 2x-5=24/7 | | 8x-3=-4 | | 12-32=-5x | | D(p)=79-8p,S(p)=37+6p | | D(p)=79-8pS(p)=37+6p | | D(p)=79-8p | | 5x+5=-16 | | (3x+1)/(X+5)=0 |